Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

Shao-Jin Gu, Lin-Hai Jing, Huan-Xia Zhang, Gang Lei and Da-Bin Qin*

School of Chemistry and Chemical Industry, China West Normal University, Nanchong 637002, People's Republic of China

Correspondence e-mail:
gushaojin2005@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
$R$ factor $=0.058$
$w R$ factor $=0.168$
Data-to-parameter ratio $=13.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

## 7-(Hydroxymethyl)-1a,7b-dihydro-1H-cyclopropa[a]naphthalene

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$, the cyclopropane ring makes a dihedral angle of $73.1(2)^{\circ}$ with the naphthalene ring system.

## Comment

Reduction of 1,8-naphthoic anhydride with lithium aluminium hydride has been used by a number of investigators as a source of 1,8 -bis(hydroxymethyl)naphthalene (Beyler \& Sarett, 1952; Bockelheide \& Vick, 1956; Trost, 1967; Cason et al., 1973). We attempted to react naphthalene-1,8-dicarboxylic anhydride with lithium aluminium hydride in tetrahydrofuran in one step to give 1,8-bis(hydroxymethyl)naphthalene, but instead compound (I) was obtained. We here report the crystal structure of the title compound, (I).

(I)

Bond lengths and angles in (I) are normal (Table 1). The dihedral angle between the $\mathrm{C} 1-\mathrm{C} 10$ and $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 11$ planes is 73.1 (2) ${ }^{\circ}$ (Fig. 1).

## Experimental

Compound (I) was prepared according to the reported precedure of Popovici-Müller \& Spencer (1997). Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from absolute ethanol.

## Crystal data

| $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}$ | Mo $K \alpha$ radiation <br> $M_{r}=172.22$ |
| :--- | :--- |
| Tetragonal, $I 4_{1} / a$ | Cell parameters from 22 |
| $a=20.373(3) \AA$ | reflections |
| $c=8.618(2) \AA$ | $\theta=4.4-7.6^{\circ}$ |
| $V=3577.0(11) \AA^{3}$ | $\mu=0.08 \mathrm{~mm}^{-1}$ |
| $Z=16$ | $T=292(2) \mathrm{K}$ |
| $D_{x}=1.279 \mathrm{Mg} \mathrm{m}^{-3}$ | Block, yellow |
|  | $0.25 \times 0.25 \times 0.22 \mathrm{~mm}$ |

## Data collection

> Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
> Absorption correction: none 1722 measured reflections 1601 independent reflections 628 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Received 19 October 2005 Accepted 28 November 2005 Online 21 December 2005

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.168$
$S=0.92$
1601 reflections
122 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0786 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.16 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0013 (8)

Table 1
Selected geometric parameters ( $\left(\AA^{\circ}{ }^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{C} 12$ | $1.413(4)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.510(5)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 1-\mathrm{C} 9$ | $1.392(5)$ | $\mathrm{C} 8-\mathrm{C} 9$ | $1.479(5)$ |
| $\mathrm{C} 1-\mathrm{C} 12$ | $1.478(5)$ | $\mathrm{C} 8-\mathrm{C} 11$ | $1.481(5)$ |
| $\mathrm{C} 7-\mathrm{C} 11$ | $1.494(5)$ |  |  |
| $\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8$ | $59.1(2)$ | $\mathrm{C} 8-\mathrm{C} 11-\mathrm{C} 7$ | $61.0(3)$ |
| $\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$ | 116.8 | $\mathrm{O} 1-\mathrm{C} 12-\mathrm{C} 1$ | $113.1(3)$ |

The H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93-0.98 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=U_{\text {eq }}(\mathrm{C}, \mathrm{O})$.

Data collection: DIFRAC (Gabe et al., 1995); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Centre for Test and Analysis, Sichuan University, for support.


Figure 1
The structure of (I), showing $30 \%$ probability displacement ellipsoids and the atomic numbering.

## References

Beyler, R. E. \& Sarett, L. H. (1952). J. Am. Chem. Soc. 74, 1406-1411. Bockelheide, V. \& Vick, G. K. (1956). J. Am. Chem. Soc. 78, 653-658. Cason, J., Lynch, D. M. \& Weiss, A. (1973). J. Org. Chem. 38, 1944-1947. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gabe, E. J., White, P. S. \& Enright, G. D. (1995). DIFRAC. National Research Council Canada, Ottawa. .
Popovici-Müller, J. V. \& Spencer, T. A. (1997). Tetrahedron Lett. 38, 81618164.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Trost, B. M. (1967). J. Am. Chem. Soc. 89, 1847-1851.

